Главная · Устройства · Как решать уравнения в экселе. Решение системы уравнений в Microsoft Excel

Как решать уравнения в экселе. Решение системы уравнений в Microsoft Excel

Задача решения уравнения встает не только перед студентами и школьниками. В Excel можно использовать различные способы выполнения этой задачи. О способе решения путем подбора параметра пойдет речь в этой статье.
Нахождение корней нелинейного уравнения с использованием средства «Подбор параметра» сводится в двум этапам:

  • определение приблизительных границ отрезков и количества корней графическим методом;
  • подбор на каждом отрезке значения корня, удовлетворяющего заданной точности вычислений.
Примером может служить решение квадратного уравнения, которое в общем виде задается выражением « Y(x) = ax 2 + bx + . Для того, чтобы построенная электронная таблица позволяла бы находить решения подобных уравнений с любыми коэффициентами, лучше вынести коэффициенты в отдельные ячейки, а в формулах для вычисления значений функции использовать ссылки на эти ячейки. Впрочем, это дело вкуса. Можно при составлении формулы использовать значения коэффициентов, а не ссылки на них.
Чтобы оценить примерные границы отрезков и количество корней, можно использовать табличное задание значений функции, т.е. задать несколько значений переменной и вычислить соответствующие значения функции. Опять же, для того, чтобы можно было моделировать расчеты для квадратных уравнений с различными коэффициентами, шаг табулирования лучше задать в отдельной ячейке. Начальное значение переменной можно будет изменять путем ввода в ячейку «А6» . Для вычисления следующего значения в ячейку «А7» введена формула «=А6+$ B$4» , т.е. использована абсолютная ссылка на ячейку с шагом табулирования.

Далее с помощью маркера заполнения формируется ряд формул для вычисления последующих значений переменной, в приведенном примере используется 20 значений.
Вводится формула для вычисления значения функции (для рассматриваемого примера в ячейку «В6» ) и формируется ряд аналогичных формул для остальных ячеек. В формуле использованы абсолютные ссылки на ячейки с коэффициентами уравнения.

По построенной таблице строится точечная диаграмма .

Если начальное значение Х и шаг выбраны неудачно, и на диаграмме нет пересечений с осью абсцисс, то можно ввести другие значения и добиться нужного результата.
Можно было бы найти решение уже на этом шаге, но для этого понадобилось бы гораздо больше ячеек и шаг, равный заданной точности вычислений (0,001). Чтобы не создавать громоздких таблиц, далее используется «Подбор параметра» из группы «Прогноз» на вкладке «Данные» . Предварительно необходимо выделить место под начальные значения переменной (корней в примере два) и соответствующие значения функции. В качестве «х1» выбирается первое из значений, дающих наиболее близкое к нулю значение функции (в примере 0,5). В ячейку L6 введена формула для вычисления функции. В окне подбора параметра необходимо указать для какой ячейки (L6 ), какое значение (0 ) нужно получить, и в какой ячейке для этого изменять значения (К6 ).

Для поиска второго корня необходимо ввести второе из значений, дающих наиболее близкое к нулю значение функции (в примере 9,5), и повторить подбор параметра для ячейки L9 (в ячейку скопирована формула из ячейки L6 ).

Предложенное оформление коэффициентов функции в отдельные ячейки позволяет без изменения формул решать другие подобные уравнения.

Подбор параметра имеется и в более ранних версиях программы.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

ВВЕДЕНИЕ

Постановка проблемы и актуальность исследования . Школьный курс математики, начиная с начальной ступени и до 11 класса, включает в себя большое количество способов решения различных видов уравнений и систем уравнений. Некоторые уравнения решаются нестандартными методами, которые применить может небольшая часть выпускников школ. Анализ изученной литературы показал, что уравнения и системы уравнений встречаются в различных отраслях промышленности и экономики. И как правило, эти уравнения выглядят не так привлекательно, как школьные, и имеют нецелые решения. Чтобы автоматизировать процесс решения уравнений и систем уравнений, мы решили найти способы с помощью электронных таблиц. Электронные таблицы широко используются в профессиональной деятельности специалистов самых разных областей науки, производства и сферы услуг, в различных государственных и коммерческих организациях и фирмах. Кроме того, электронные таблицы могут быть использованы при решении бытовых задач, таких, как создание домашней картотеки книг или компакт-дисков, ведение учета коммунальных платежей или домашнего бюджета и т.п.

К настоящему времени существует достаточное количество различных учебных материалов, где подробно раскрываются способы решения производственных задач с помощью уравнений и систем уравнений , а также методы их решения с помощью электронных таблиц .

Тем не менее, в ходе исследования было обнаружено, что недостаточно исследованы способы решения уравнений высших степеней, а также уравнений, имеющих бесконечное множество решений (например, тригонометрических).

Актуальность обозначенной проблемы определила выбор темы исследования: «Решение уравнений средствами приложения Microsoft Excel».

Цель работы : исследовать инструменты приложения Microsoft Excel для решения уравнений разного порядка.

Объект исследования : приложение Microsoft Excel.

Предмет исследования : применение инструментов ПОДБОР ПАРАМЕТРА и ПОИСК РЕШЕНИЯ приложения Microsoft Excel при решении уравнений.

Гипотеза исследования: использование инструментов приложения MS Excel ПОДБОР ПАРАМЕТРА и ПОИСК РЕШЕНИЯ значительно упрощает процесс решения уравнений различного вида.

Задачи исследования :

Изучить литературу по применению уравнений при решении производственных задач.

Изучить литературу по использованию приложения Microsoft Excel в практической деятельности.

Рассмотреть способы решения уравнений с помощью инструментов ПОДБОР ПАРАМЕТРА и ПОИСК РЕШЕНИЯ приложения Microsoft Excel.

Создать видеокурсы по решению различных видов уравнений.

Теоретическая значимость : проведен анализ ряда источников по возможностям приложения Microsoft Excel при решении уравнений разного порядка.

Практическая значимость : предложены способы решения уравнений высших порядков и тригонометрических уравнений с помощью приложения MS Excel, систематизирован и обобщен материал в форме видеокурсов.

Методы исследования : теоретический анализ и обобщение научной литературы и материалов сети Интернет; проведение экспериментов по решению уравнений различного вида с помощью инструментов Подбор параметра и Поиск решения; создание видеокурсов по использованию инструментов Подбор параметра и Поиск решения при решении различных уравнений.

УРАВНЕНИЯ В РАЗЛИЧНЫХ ОТРАСЛЯХ

В современном обществе уравнения нашли свое применение во многих отраслях хозяйства и производства, а также практически во всех новейших технологиях. Конечно, математика, как и любая другая наука, не стоит на месте. Уже выработано достаточно способов решения различных видов уравнений различных степеней. Появление компьютеров и стремительное развитие информационных технологий позволило в несколько раз упростить задачи нахождения корней различных уравнений. В данной главе, в качестве примеров, нами представлены виды уравнений, решаемых в некоторых отраслях хозяйства и производства.

1.1. Уравнения при решении экономических задач

Пример 1.1.1. Рассчитать, с какого возраста необходимо уплачивать по 1000 рублей в качестве дополнительных страховых взносов, чтобы получить прибавку к пенсии в 2000 рублей за счет участия в государственной программе софинансирования?

Входные данные:

ежемесячные отчисления - 1000 руб.;

период уплаты дополнительных страховых взносов - расчетная величина (пенсионный возраст (в примере - для мужчины) минус возраст участника программы на момент вступления);

пенсионные накопления - расчетная величина (накопленная за период участником сумма, увеличенная государством в 2 раза;

ожидаемый период выплаты трудовой пенсии - 228 мес. (19 лет);

желаемая прибавка к пенсии - 2000 руб.

пенсионные накопления - расчетная величина (накопленная за период участником сумма, увеличенная государством в 2 раза).

Пусть х - возраст, с которого необходимо производить отчисления. Тогда прибавка к пенсии (в размере 2000 рублей) будет рассчитана по формуле:

Получили линейное уравнение, в котором необходимо найти параметр x .

Пример 1.1.2. Пусть дана структура цены договора: собственные расходы, прибыль, НДС. Известно, что собственные расходы составляют 150 000,00 руб., НДС 18%, а целевая стоимость договора 200 000,00 руб. Необходимо подобрать такое значение прибыли, при которой стоимость договора равна Целевой (то есть Расхождение должно равняться нулю) .

Пусть х - прибыль. Тогда цену продукции будем рассчитывать как сумму Собственных расходов и Прибыли: 150000+х. НДС от цены продукции будет равен (150000+х)*0,18. Стоимость договора вычислим как сумму Цены продукции и НДС: (150000+х)+ (150000+х)*0,18=(150000+х)*1,18.

Итак, получили уравнение (150000+х)*1,18=2000.

Пример 1.1.3. , решение которого также сводится к линейному уравнению. Определить максимальную сумму кредита, которую мы можем себе позволить взять в банке, если известно, что ежемесячно мы можем выплачивать сумму в размере 1 800,00 руб. Известны также процентная ставка по кредиту и срок, на который мы хотим взять кредит (количество месяцев) .

Пример 1.1.4 , решение которого сводится к системе линейных уравнений. Предприятию для изготовления наборов елочных украшений необходимо изготовить их составные части - шар, колокольчик, мишура .

В свою очередь для изготовления этих составных частей необходимы три вида сырья - стекло (в г), папье-маше (в г), фольга (в г), потребности в котором отражены в таблице.

Требуется:

1) определить потребности в сырье для выполнения плана по изготовлению комплектов первого, второго, третьего и четвертого вида в количестве соответственно x 1 , x 2, x 3 и x 4 штук;

2) провести подсчеты для значений x 1 = 500, x 2 = 400, x 3 = 300 и x 4 =200.

Для решения данной задачи необходимо найти корни системы линейных уравнений:

y 1 = 5· (5x 1 + 6x 2 + 8x 3 + 10x 4) = 25x 1 + 30x 2 + 40x 3 + 50x 4

y 2 = 4· (3x 1 + 4x 2 + 6x 3) = 12x 1 + 16x 2 + 24x 3

y 3 = 3· (5x 1 + 6x 2 + 8x 3 + 10x 4) + 75· (3x 2 + 5x 3 + 8x 4) = 15x 1 + 243x 2 + 399x 3 + 630x 4

Уравнения в электроэнергетике

Рассмотрим применение уравнений в электроэнергетике .

Пример 1.2.1. Приведена схема электрической цепи постоянного тока. Найти токи в ветвях цепи.

Для решения данной задачи необходимо составить и решить систему линейных уравнений на основе законов Кирхгофа (здесь не рассматривается процесс составления системы уравнений):

Уравнения в транспортной отрасли

Пример 1.3.1. Для решения задач проектирования транспортных сооружений и принятия обоснованных решений при планировании, контроле и управлении технологическими процессами дорожного строительства необходимо выявлять взаимосвязи между параметрами, определяющими ход этих процессов, и представлять их в количественной форме - в виде математических моделей. В связи с этим на практике часто применяется регрессионный анализ.

Регрессионный анализ - метод моделирования измеряемых данных и исследования их свойств путем выявления взаимосвязи между зависимой переменной y и одной или несколькими независимыми переменными x 1, x 2, ..., xn.

Независимые переменные иначе называют факторами, аргументами, или регрессорами , а зависимые переменные - функциями, откликами, результирующими, объясняемыми.

На практике уравнение регрессии чаще всего подбирается в виде линейной и нелинейной функции (наиболее простые - гипербола, экспонента и парабола) .

Пример 1.3.2. Транспортная задача

Требуется составить план перевозок, при котором все запасы (строительных материалов или конструкций) поставщиков (АБЗ, ЦБЗ, карьеры) будут вывезены, спрос потребителей (объекты дорожных работ, участки) полностью удовлетворен, и при этом суммарные транспортные издержки будут минимальными (стоимость перевозок, сроки, другие ресурсы).

При решении данной задачи составляется система линейных уравнений относительно xij - количества груза (материалов), перевозимого из пункта i в пункт j .

Уравнения в строительной отрасли

Пример 1.4.1. Вычислить стрелу прогиба  (в середине) прямоугольной пластины. Прямоугольная пластина загружена равномерно распределенной нагрузкой интенсивностью q. Пластина защемлена по контуру, края неподвижны .

Стрела прогиба вычисляется как корень нелинейного уравнения на интервале :

Пример 1.4.2. Определить критическую силу для стальной колонны двутаврового сечения, если известны длина колонны L, модуль упругости стали Е, коэффициент жесткости упругой опоры С, момент инерции I.

Критическая сила вычисляется по формуле:

где  - коэффициент приведения длины колонны, который определяется по формуле

Параметр  находится из решения уравнения

на интервале .

ИСПОЛЬЗОВАНИЕ ИНСТРУМЕНТА ПОДБОР ПАРАМЕТРА ПРИ РЕШЕНИИ УРАВНЕНИЙ

При решении производственных задач достаточно часто возникает проблема подбора параметра. Например, в экономических расчётах применяются алгоритмы расчёта стоимости товара, расчёта фонда заработной платы, прибыли от деятельности предприятия, которые, в свою очередь, зависят от множества изменяемых и неизменяемых факторов .

Пример 2.1. Итак, сначала, с целью изучения принципа работы надстройки ПОДБОР ПАРАМЕТРА, рассмотрим решение линейного уравнения вида Ах+В=С с помощью приложения Microsoft Excel.

В ячейку В3 введем любое первоначальное значение переменной x , например, 0, а в ячейку С1 введем левую часть уравнения в виде формулы: =B1*B3+B2. Вызовем диалоговое окно ПОДБОР ПАРАМЕТРА с помощью команд Данные - Анализ «что-если» - Подбор параметра . В этом окне в поле Установить в ячейке введем ссылку на ячейку с формулой, в поле Значение - ожидаемый результат (т.е. 7), в поле Изменяя значение в ячейке - ссылку на ячейку, в которой будет храниться значение подбираемого параметра (содержимое этой ячейки не может быть формулой).

Рисунок 1 - Диалоговое окно ПОДБОР ПАРМЕТРА

После нажатия кнопки ОК , получим результат.

Рисунок 2 - Решение линейного уравнения с помощью диалогового окна ПОДБОР ПАРАМЕТРА

Известно, что инструмент Подбор параметра в основном используется при решении линейного уравнения. Если пытаться, например, решать с помощью Подбора параметра квадратное уравнение (которое имеет два корня), то инструмент найдет решение, но только одно, то, которое ближе к начальному значению.

Пример 2.2. Рассмотрим пример решения квадратного уравнения. Найдем корни квадратного уравнения. Сначала создадим первоначальную таблицу.

Рисунок 3 - Первоначальные данные квадратного уравнения

Зададим любое первоначальное значение х, например, 0. Далее воспользуемся инструментом ПОДБОР ПАРАМЕТРА .

Получили результат: 2.

Второй корень найдем, задав другое начальное значение, например, 5. И проделаем те же действия.

ИСПОЛЬЗОВАНИЕ НАДСТРОЙКИ ПОИСК РЕШЕНИЯ ПРИ РЕШЕНИИ УРАВНЕНИЙ

Пример 3.1. Рассмотрим решение квадратного уравнения (с предыдущей главы) с помощью инструмента ПОИСК РЕШЕНИЯ.

Введем начальные данные

Рисунок 4 - Первоначальные данные квадратного уравнения

Вызываем инструмент ПОИК РЕШЕНИЯ, выбрав команду ДАННЫЕ.

Рисунок 5 - Надстройка ПОИСК РЕШЕНИЯ при решении квадратного уравнения

В поле «Установить целевую ячейку» выбираем ячейку с формулой квадратного уравнения С1. Далее установим переключатель в положение «Равной значению 0». В поле «Изменяя ячейки» добавим ячейку В4. Нажмем кнопку «Выполнить». Получили решение.

Рисунок 6 - Решение квадратного уравнения, найденного с помощью надстройки ПОИСК РЕШЕНИЯ

При решении данным способом также получили только один корень.

Для нахождения второго корня зададим другое начальное значение переменной х, например, равно 1.

Однако, на любом производстве чаще всего приходится сталкиваться с уравнениями высших степеней .

Пример 3.2. Рассмотрим уравнение пятой степени -3x 5 +x 3 +2x 2 -3x-3=0.

Прежде чем находить корни уравнения (а у этого уравнения должно быть максимум 5 корней), выясним, в каких интервалах содержатся эти корни. Воспользуемся графиком функции, с помощью которого мы наглядно увидим промежутки расположения корней уравнения.

Построим график функции. Для этого в ячейке А1 введем «х», в ячейке В1 введем «у». Значения х внесем в ячейки А2:А22, значения у будем рассчитывать в ячейках В2:В22 соответственно.

Рисунок 7 - Формула уравнения пятой степени

Известно, что корень уравнения (уравнение записано в виде f(x )=0) - это такое значение аргумента, при котором значение функции равно нулю. В графическом представлении - это может быть точка пересечения или касания графика функции с осью абсцисс.

Построим график функции.

Рисунок 8 - График функции на промежутке [-10; 10] с шагом 1

График функции показывает, что уравнение, имеет единственный действительный корень (остальные - комплексные), который находится в промежутке [-1; 0].

Найдем его с помощью инструмента ПОИСК РЕШЕНИЯ. Для этого в таблице выберем точку, близкую к решению уравнения, например, -0,7.

Рисунок 9 - Нахождение корня уравнения с помощью надстройки

ПОИСК РЕШЕНИЯ

Установим с помощью команды «Формат ячеек» относительную погрешность 0,0001.

Итак, решением уравнения является х≈ -0,668.

Таким образом, получили алгоритм решения уравнения высшей степени:

поиск интервалов, в которых содержится только по одному корню;

уточнение корня в выбранном интервале (определением значения корня с заданной точностью).

Тригонометрические уравнения

Особенность тригонометрических уравнений заключается в том, что они имеют бесконечно много решений, и все решения отличаются между собой на определенный период.

Пример решения одного из тригонометрических уравнений подробно рассмотрен в Приложении 1.

В Приложении 2 также рассмотрен пример нахождения решений системы линейных уравнений.

ЗАКЛЮЧЕНИЕ

В результате проведенной исследовательской работы было выявлено, что решение различных уравнений и систем уравнений применяется во многих отраслях экономики и промышленности.

В ходе исследований мы научились находить корни уравнений и систем линейных уравнений с помощью инструментов ПОИСК РЕШЕНИЯ и ПОДБОР ПАРАМЕТРА приложения Microsoft Excel, создали видеокурсы по решению уравнений с помощью приложения Microsoft Excel.

Таким образом, поставленные цель и задачи данного исследования были выполнены.

Кроме того, экспериментальным путём, было выявлено, что использование инструментов ПОИСК РЕШЕНИЯ и ПОДБОР ПАРАМЕТРА приложения Microsoft Excel значительно упрощает процесс нахождения корней уравнений и систем уравнений. Таким образом, поставленная в начале исследования гипотеза подтвердилась.

Результаты выполненной работы позволят использовать возможности изученных инструментов в будущей профессиональной деятельности, особенно если выполнение задания будет содержать сложные расчеты.

Исследование может быть полезно не только учащимся в учебной деятельности, но и специалистам различных отраслей экономики и промышленности, занимающимся проектированием объектов.

Результаты проведенной работы могут быть использованы при изучении других возможностей приложения Microsoft Excel.

На этом исследование не закончено. Мы планируем продолжить рассмотреть способы решения систем нелинейных уравнений с помощью Microsoft Excel.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ И ЛИТЕРАТУРЫ:

Богомолов, С.В. Экономико-математические методы проектирования транспортных сооружений [Электронный ресурс] : методические указания к практическим занятиям и самостоятельной работе для студентов специальности 270205 «Автомобильные дороги и аэродромы» всех форм обучения / С.В. Богомолов. - Электрон. дан. - Кемерово: КуГТУ, 2013. - 30 с.

Информатика для экономистов. Практикум: учебное пособие для бакалавров / под ред. В.П. Полякова, В.П. Косарева. - М.: Издательство Юрайт, 2013. - 343 с.

Митрофанов, С.В. Использование системы MathCAD при решении задач электротехники и электромеханики: методические указания к выполнению РГЗ по дисциплине «Прикладные задачи программирования» / С.В. Митрофанов, А.С. Падеев. - Оренбург: ГОУ ОГУ, 2005. - 40 с.

Репкин, Д.А. Применение MS EXCEL для решения прикладных задач в экономике: учебное пособие для студентов направления 080100 «Экономика» всех профилей подготовки, всех форм обучения / Д.А. Репкин. - Киров: ПРИП ФГБОУ ВПО «ВятГУ», 2012. [Электронный ресурс]

Федулов, С.В. Использование MS Excel в финансовых вычислениях: учеб.-метод. пособие / С.В. Федулов. - Екатеринбург: Изд-во УрГУПС, 2013. - 94 с.

Численные методы. Часть 1: Методические указания к лабораторным и самостоятельным работам по курсам «Информатика» и «Вычислительная математика» / Сост. Ф.Г. Ахмадиев, Ф.Г. Габбасов, Р.Ф. Гизяятов, И.В. Маланичев. - Казань: Изд-во казан. гос. архитект-строит. ун-та, 2013 - 34 с.

Решение нелинейных уравнений в Excel https://www.altstu.ru/media/f/lr3nelin-uravn.pdf - сайт Алтайского государственного технического университета им. И.И. Ползунова

http://excel2.ru/articles/podbor-parametra-v-ms-excel - сайт Excel2.ru

https://knowledge.allbest.ru/mathematics/3c0b65625b3ad68b4c43a89421306d37_0.html - сайт allbest

Приложение 1

Решение тригонометрического уравнения с помощью инструмента ПОИСК РЕШЕНИЯ

Найдем решения уравнения.

Решать данное уравнение будем аналогично примеру 3.1. То есть:

Протабулируем функцию и построим ее график;

Уточним корни уравнения.

Протабулируем функцию на промежутке [-10; 10]. Сначала в ячейках А2:А22 зададим значения аргумента x и найдем значения функции в данных точках, которые запишем в ячейки В2:В22.

В ячейке В2 укажем формулу: =A2*TAN(A2)-1

Рисунок 1 - Таблица значений аргумента и функции

на отрезке [-10; 10] с шагом 1

Построим график функции на данном отрезке.

Рисунок 2 - График заданной тригонометрической фнкции

Проанализировав график и таблицу значений функции, видим, что корни уравнения расположены в промежутках (-10; -9), (-7; -6); (-4; -3) и т.п., то есть на тех промежутках, где функция меняет знак и пересекает ось Ох.

Уточним первый корень уравнения. Для этого установим курсор в ячейке В2 и вызовем инструмент ПОИСК РЕШЕНИЯ.

Рисунок 3 - Надстройка ПОИСК РЕШЕНИЯ

Итак, первый корень получен.

Рисунок 4 - Решение тригонометрического уравнения

Аналогично, найдем корень уравнения, задав начальное значение х=-7 и х= -4.

Рисунок 5 - Три корня тригонометрического уравнения

Учитывая, что период функции тангенса равен π, найдем разницу между корнями уравнения: получили 3,04 и 3,01. Итак, разность между корнями равна примерно 3. Следовательно, следующие корни уравнения: - 0,4; 2,6; и т.п.

Таким образом, для нахождения корней тригонометрического уравнения, необходимо проделать те же действия, что и при решении уравнений высших степеней.

Приложение 2

Использование инструмента ПОИСК РЕШЕНИЯ при решении систем линейных уравнений

С помощью инструмента ПОИСК РЕШЕНИЯ можно решить и систему линейных уравнений .

Пример 4.1. Решим следующую систему линейных уравнений

Для этого зададим ячейки, где будут записаны решения системы уравнений. Пусть это будут ячейки A2:D2.

Рисунок 1 - Создание таблицы для решения системы линейных уравнений

Введем в ячейки, предназначенные для решения (А2:D2) произвольные величины, лежащие в области определения (начальные значения).

В ячейки (А3:D3) внесем формулы, по которым должны вычисляться правые части уравнений: (=8*A2+4*B2-6*C2; =-2*А2-4*С2-6*D2; =6*А2+4*В2+4*С2+6*D2; = 4*А2+6*В2+8*С2+8*D2)

Рисунок 2 - Первоначальная таблица для решения системы линейных уравнений

Запустим ПОИСК РЕШЕНИЯ из меню ДАННЫЕ. Выберем одну из ячеек, содержащих формулы, в качестве целевой ячейки (например, А3), сделаем её равной -18.

В поле ИЗМЕНЯЯ ЯЧЕЙКИ вставим ячейки А2:D2. Добавим ограничения, нажимая на кнопку ДОБАВИТЬ: В3=-2; С3=-14; D3=-6.

Рисунок 3 - Диалоговое окно надстройки ПОИСК РЕШЕНИЯ

Рисунок 4 - Диалоговое окно ДОБАВЛЕНИЕ ОГРАНИЧЕНИЯ

Нажмем на кнопку ВЫПОЛНИТЬ. Получим решение:

Рисунок 5 - Решение системы линейных уравнений

Таким образом, решение системы линейных уравнений найдено. Если проверить решение (х1=-5, х2=1, х3=-3, х4=4) подстановкой, то получим верные равенства.

Одна из наиболее актуальных проблем компьютерного обучения – проблема отбора и использования педагогически целесообразных обучающих программ.

При изучении отдельных тем и решении некоторых задач на уроках математики в старших классах громоздкие вычисления как, например, при решении уравнений методом деления отрезка пополам или методом последовательных приближений, затмевают существо математической задачи, не дают увидеть красоту, рациональность применяемого метода решения.

В данной статье я представила те задачи, решение которых с помощью MS EXCEL позволяет получить наглядное, доступное для понимания учащимися решение, показать его логику, рациональность. Попутно учащиеся получают устойчивые навыки работы с программой.

Нахождение корней уравнения с помощью подбора параметра

Пример 1.

Пусть известно, что в штате больницы состоит 6 санитарок, 8 медсестер, 10 врачей, 3 заведующих отделениями, главный врач, заведующий аптекой, заведующая хозяйством и заведующий больницей. Общий месячный фонд зарплаты составляет 1000 000 условных единиц. Необходимо определить, какими должны быть оклады сотрудников больницы.

Решение такой задачи можно искать методом перебора. Однако в лучшем случае на это уходит много времени. Можно предложить другой способ решения. В EXCEL он реализован как поиск значения параметра формулы, удовлетворяющего ее конкретному значению.

Построим модель решения этой задачи. За основу возьмем оклад санитарки, а остальные оклады будем вычислять, исходя из него: во столько-то раз или на столько-то больше. Говоря математическим языком, каждый оклад является линейной функцией от оклада санитарки: A i *С+В i , где С – оклад санитарки; А i и В i – коэффициенты, которые для каждой должности определяют следующим образом:

  • медсестра получает в 1,5 раза больше санитарки (А 2 =1,5; В 2 =0);
  • врач – в 3 раза больше санитарки (А 3 =3; В 3 =0);
  • заведующий отделением – на 30 y.e. больше, чем врач (А 4 =3; B 4 =30);
  • заведующий аптекой – в 2 раза больше санитарки (А 5 =2; В 5 =0);
  • заведующий хозяйством – на 40 y.e. больше медсестры (А 6 =1,5; В 6 =40);
  • заведующий больницей – на 20 y.e. больше главного врача (А 8 =4; В 8 =20);
  • главный врач – в 4 раза больше санитарки (А 7 =4; В 7 =0);

Зная количество человек на каждой должности, нашу модель можно записать как уравнение: N 1 *(A 1 *C+B 1)+N 2 *(A 2 *C+B 2)+...+N 8 *(A 8 *C+B 8) = 1000000, где N 1 – число санитарок, N 2 – число медсестер и т.д.

В этом уравнении нам известны A 1 ...A 8 , B 1 ...B 8 и N 1 ...N 8 , а С неизвестно. Анализ уравнения показывает, что задача вычисления заработной платы свелась к решению линейного уравнения относительно С. Предположим, что зарплата у санитарки 150,00 y.e.

Введите исходные данные в рабочий лист электронной таблицы, как показано ниже.

Оклад мед. Работников

Должность

Зарплата

Количество сотрудников

Суммарная зарплата

Санитарка

Медсестра

Зав. отделением

Зав. аптекой

Главврач

Зав. больницей

Общий фонд равен

В столбце D вычислите заработную плату для каждой должности. Например, для ячейки D4 формула расчета имеет вид =B4*$D$3+C4.

В столбце F вычислите заработную плату всех работников данной должности. Например, для ячейки F3 формула расчета имеет вид =D3*E3.

В ячейке F11вычислите суммарный фонд заработной платы больницы. Рабочий лист электронной таблицы будет выглядеть, как показано ниже.

Оклад мед. Работников

Должность

Зарплата

Количество сотрудников

Суммарная зарплата

Санитарка

Медсестра

Зав. отделением

Зав. аптекой

Главврач

Зав. больницей

Общий фонд равен

Чтобы определите оклад санитарки так, чтобы расчетный фонд был равен заданному надо:

  • Активизировать команду Подбор параметра во вкладке Данные / Работа с данными /Анализ «Что, если» ;
  • В поле "Установить в ячейке" появившегося окна ввести ссылку на ячейку F11, содержащую формулу;
  • В поле "Значение" набрать искомый результат 1000000;
  • В поле "Изменяя значение ячейки" ввести ссылку на изменяемую ячейку D3 и щелкните на кнопке ОК.

Анализ задачи показывает, что с помощью Excel можно решать линейные уравнения. Конечно, такое уравнение может решить любой школьник. Однако, благодаря этому простому примеру стало, очевидным, что поиск значения параметра формулы, удовлетворяющего ее конкретному значению, – это не что иное, как численное решение уравнений. Другими словами, используя Excel, можно решать любые уравнения с одной переменной.

Задание для учащихся:

Составить несколько вариантов штатного расписания с использованием функции Подбор параметра и оформить ихв виде таблицы:

  • Изменить количество сотрудников на различных должностях;
  • Подобрать зарплату санитарки в новых условиях;
  • Составить таблицу нескольких вариантов штатного расписания.

Рассмотрим еще один пример нахождения корней уравнения с помощью подбора параметра. При решении этого уравнения используется также метод последовательных приближений. Учащиеся в классах с углубленным изучением математики знакомы с этим методом. Поэтому, чтобы этот пример был доступен для других учащихся, предлагаю краткую теорию этого метода.

Пусть дано уравнение, записанное в виде x=F(x). Выбирают некоторое начальное приближение x 1 и подставляют его вместо x в F(x). Полученное значение x 2 =F(x 1) этой функции считают вторым приближением. Далее находят третье приближение по формуле x 3 =F(x 2) и так далее. Таким образом, получаем последовательность x 1 , x 2 , x 3 ,…, x n ,… чисел, имеющая предел α. Тогда если функция F(x) непрерывна, из равенства x n+1 =F(x n) получаем α=F(α). Это означает, что α является решением уравнения x=F(x).

Пример 2.

Пусть нам дан многочлен третьей степени:

x 3 -0,01x 2 -0,7044x+0,139104=0.

Так как мы ищем корни полинома третьей степени, то имеются не более трех вещественных корней. Для нахождения корней их первоначально надо локализовать, то есть найти интервалы, на которых они существуют. Такими интервалами локализации корней могут служить промежутки, на концах которых функция имеет противоположный знак. С целью нахождения интервалов, на концах которых функция изменяет знак, необходимо построить ее график или протабулировать ее. Составим таблицу значений функции на интервале [-1;1] с шагом 0,2. Для этого необходимо:

  • Ввести в ячейку A2 значение -1, а в ячейку A3 значение -0,8.
  • Выбрать диапазон A2:A3, расположить указатель мыши на маркере заполнения этого диапазона и протянуть его на диапазон A4:A12, аргумент протабулирован.
  • В ячейку B2 ввести формулу: =A2^3-0,01*A2^2-0,7044*A2+0,139104
  • Выбрать ячейку B2. Расположить указатель мыши на маркере заполнения этой ячейки и протянуть его на диапазон B3:B12. Функция также протабулирована.

Значение аргумента х

Значение функции у

Из таблицы видно, что полином меняет знак на интервалах [-1; -0,8], и , и поэтому на каждом из этих интервалов имеется свой корень. Так как полином третьей степени имеет не более трех корней, то они все локализованы.

Прежде чем приступить к нахождению корней при помощи подбора параметра, необходимо выполнить некоторую подготовительную работу:

  • Установить точность, с которой находится корень. Корень при помощи подбора параметра находится методом последовательных приближений. Для этого в Настройке панели быстрого доступа / Другие команды, и на вкладке Формулы диалогового окна Параметры Exel задайте в Параметрах вычислений относительную погрешность и предельное число итераций равными 0,00001 и 1000, соответственно.
  • Отвести на рабочем листе ячейку, например С2, под искомый корень. Эта ячейка будет играть двойную роль. До применения подбора параметра в ней находится начальное приближение к корню уравнения, а после применения – найденное приближенное значение корня.
  • Корень при помощи подбора параметра находим методом последовательных приближений. Поэтому в ячейку C2 надо ввести значение, являющееся приближением к искомому корню. В нашем случае, первым отрезком локализации корня является [-1;-0,8]. Следовательно, за начальное приближение к корню разумно взять среднюю точку этого отрезка -0,9.
  • Отвести ячейку, например D2, под функцию, для которой ведется поиск корня, причем вместо неизвестной у этой функции должна указываться ссылку на ячейку, отведенную под искомый корень. Таким образом, в ячейку D2 введите формулу: =C2^3-0,01*C2^2-0,7044*C2+0,139104

Аналогично надо поступить с двумя другими искомыми корнями:

  • Отвести ячейку C8 под второй корень, ввести в нее начальное приближение 0,3, а в ячейку D8 ввести следующую формулу: =C8^3-0,01*C8^2-0,7044*C8+0,139104
  • Отвести ячейку C10 под второй корень, ввести в нее начальное приближение 0,7, а в ячейку D10 ввести следующую формулу: =C10^3-0,01*C10^2-0,7044*C10+0,139104

Результаты выполненных действий приведены в таблице.

Значение х

Значение у

Начальное приближение до применения метода

Значение функции

Теперь можно переходить к нахождению первого корня уравнения:

Выберете команду Подбор параметра . На экране отобразится диалоговое окно Подбор параметра .

  • В поле Установить в ячейке введите ссылку на ячейку D2. В этом поле дается ссылка на ячейку, в которой введена формула, вычисляющая значение левой части уравнения. Для нахождения корня с помощью подбора параметра уравнение надо представить в таком виде, чтобы его правая часть не содержала переменную.
  • В поле Значение введите 0. Здесь указывается значение из правой части уравнения.
  • В поле Изменяя значение ячейки введите C2. В данном поле приводится ссылка на ячейку, отведенную под переменную.
  • Нажмите кнопку OK .

На экране отображается окно Результат подбора параметра с результатами работы команды Подбор параметра . Кроме того, рассматриваемое средство помещает найденное приближенное значение корня в ячейку C2. В данном случае оно равно -0,920. Аналогично в ячейках C8 и C10 находятся два оставшихся корня. Они равны 0,210 и 0,721.

Значение х

Значение у

Корень уравнения

Значение функции

Задание для учащихся:

Найти все корни уравнений

1. Х 3 -2,92Х 2 +1,4355Х+0,791136=0

2. Х 3 -2,56Х 2 -1,3251Х+4,395006=0

3. Х 3 +2,84Х 2 -5,6064Х-14,766336=0

Нахождение корней уравнения методом деления отрезка пополам

Краткая теория метода. Пусть непрерывная функция F(x) имеет значения разных знаков на концах отрезка , то есть F(a)F(b)<0.Тогда уравнение F(x)=0 имеет корень внутри этого отрезка. Отрезок отрезком локализации корня. Пусть c=(a+b)/2 – середина отрезка . Если F(a)F(c)<=0, то корень находится на отрезке , который берем за новый отрезок локализации корня. Если F(a)F(c)>0, то за новый отрезок локализации корня берем .Отметим, что новый отрезок локализации корня в два раза меньше первоначального. Процесс деления отрезка для локализации корня продолжаем до тех пор, пока его длина не станет меньше ε, точности нахождения корня. В этом случае любая точка отрезка локализации отличается от корня не более чем на ε/2.

Найдем корни уравнения x 2 –2=0 с точностью до 0,001 методом деления отрезка пополам. За первоначальный отрезок локализации корня выбран . Для реализации этого метода введите в ячейки рабочего листа формулы либо значения, приведенные ниже в таблице:

Ячейка

Формула или значение

=(A3^2-2)*(C3^2-2)

ЕСЛИ(B3–A3<$B$1;""Корень найден и равен "" & текст (C3;""0,000""); "" "")

ЕСЛИ (D3<=0; A3;C3)

ЕСЛИ(D3<=0; C3; B3)

=(A4^2-2)*(C4^2-2)

ЕСЛИ(B4-A4<$B$1; ""Корень найден и равен "" & текст(C4; ""0,000""); "" "")

Теперь осталось только выбрать диапазон A4:F4, расположить указатель мыши на маркере его заполнения и пробуксировать его вниз до тех пор, пока в столбце F не появится сообщение о том, что корень найден. В данном случае сообщение появится в ячейке F14, а значение корня с точностью до 0,001 равно 1,415.

Число шагов можно определить заранее и скопировать формулы в диапазон из необходимого числа строк. Число шагов до нахождения корня определяется по формуле: +1 (1), где [x] есть целая часть числа х, t – заданная точность.

В заключение отмечу, что в рассмотренном примере использовались:

  • Операция конкатенации строк, которая объединяет несколько строк в одну (обозначается символом амперсанта &). При объединении двух строк вторая строка добавляется непосредственно в конец первой строки.
  • Функция рабочего листа из категории функций по работе с текстом ТЕКСТ (TEXT). Данная функция преобразует значение в текст в заданном числовом формате.

Задание для учащихся:

Вычислить корень уравнения cosx = x на отрезке с точностью до 0,001. Число шагов для определения корня вычислить при помощи формулы (1).

Использование MS EXEL значительно расширяет круг задач, которые можно использовать в обучении. Это обусловлено возможностью передачи трудоемких операций компьютеру, например, при решении уравнений методами итераций и деления отрезка пополам.

Литература:

  1. Информатика в школе / Под ред. Макаровой Н. В. – СПб: Питер Ком, 1999.
  2. Символоков Л.В. Решение бизнес задач в Microsoft Office – М.: ЗАО "Издательство БИНОМ", 2001.
  3. Шохолович В.Ф. Информационные технологии обучения. Информатика и образование. 1998. – №2.
  4. Игнекова Г.С. Методические аспекты подготовки учителя информатики. Информатика и образование. 1998. – №3.

Умение решать системы уравнений часто может принести пользу не только в учебе, но и на практике. В то же время, далеко не каждый пользователь ПК знает, что в Экселе существует собственные варианты решений линейных уравнений. Давайте узнаем, как с применением инструментария этого табличного процессора выполнить данную задачу различными способами.

Способ 1: матричный метод

Самый распространенный способ решения системы линейных уравнений инструментами Excel – это применение матричного метода. Он заключается в построении матрицы из коэффициентов выражений, а затем в создании обратной матрицы. Попробуем использовать данный метод для решения следующей системы уравнений:

14x1 +2x2 +8x4 =218
7x1 -3x2 +5x3 +12x4 =213
5x1 +x2 -2x3 +4x4 =83
6x1 +2x2 +x3 -3x4 =21

  1. Заполняем матрицу числами, которые являются коэффициентами уравнения. Данные числа должны располагаться последовательно по порядку с учетом расположения каждого корня, которому они соответствуют. Если в каком-то выражении один из корней отсутствует, то в этом случае коэффициент считается равным нулю. Если коэффициент не обозначен в уравнении, но соответствующий корень имеется, то считается, что коэффициент равен 1 . Обозначаем полученную таблицу, как вектор A .
  2. Отдельно записываем значения после знака «равно». Обозначаем их общим наименованием, как вектор B .
  3. Теперь для нахождения корней уравнения, прежде всего, нам нужно отыскать матрицу, обратную существующей. К счастью, в Эксель имеется специальный оператор, который предназначен для решения данной задачи. Называется он МОБР . Он имеет довольно простой синтаксис:

    МОБР(массив)

    Аргумент «Массив» — это, собственно, адрес исходной таблицы.

    Итак, выделяем на листе область пустых ячеек, которая по размеру равна диапазону исходной матрицы. Щелкаем по кнопке «Вставить функцию» , расположенную около строки формул.

  4. Выполняется запуск Мастера функций . Переходим в категорию «Математические» . В представившемся списке ищем наименование «МОБР» . После того, как оно отыскано, выделяем его и жмем на кнопку «OK» .
  5. МОБР . Оно по числу аргументов имеет всего одно поле – «Массив» . Тут нужно указать адрес нашей таблицы. Для этих целей устанавливаем курсор в это поле. Затем зажимаем левую кнопку мыши и выделяем область на листе, в которой находится матрица. Как видим, данные о координатах размещения автоматически заносятся в поле окна. После того, как эта задача выполнена, наиболее очевидным было бы нажать на кнопку «OK» , но не стоит торопиться. Дело в том, что нажатие на эту кнопку является равнозначным применению команды Enter . Но при работе с массивами после завершения ввода формулы следует не кликать по кнопке Enter , а произвести набор сочетания клавиш Ctrl+Shift+Enter . Выполняем эту операцию.
  6. Итак, после этого программа производит вычисления и на выходе в предварительно выделенной области мы имеем матрицу, обратную данной.
  7. Теперь нам нужно будет умножить обратную матрицу на матрицу B , которая состоит из одного столбца значений, расположенных после знака «равно» в выражениях. Для умножения таблиц в Экселе также имеется отдельная функция, которая называется МУМНОЖ . Данный оператор имеет следующий синтаксис:

    МУМНОЖ(Массив1;Массив2)

    Выделяем диапазон, в нашем случае состоящий из четырех ячеек. Далее опять запускаем Мастер функций , нажав значок «Вставить функцию» .

  8. В категории «Математические» , запустившегося Мастера функций , выделяем наименование «МУМНОЖ» и жмем на кнопку «OK» .
  9. Активируется окно аргументов функции МУМНОЖ . В поле «Массив1» заносим координаты нашей обратной матрицы. Для этого, как и в прошлый раз, устанавливаем курсор в поле и с зажатой левой кнопкой мыши выделяем курсором соответствующую таблицу. Аналогичное действие проводим для внесения координат в поле «Массив2» , только на этот раз выделяем значения колонки B . После того, как вышеуказанные действия проведены, опять не спешим жать на кнопку «OK» или клавишу Enter , а набираем комбинацию клавиш Ctrl+Shift+Enter .
  10. После данного действия в предварительно выделенной ячейке отобразятся корни уравнения: X1 , X2 , X3 и X4 . Они будут расположены последовательно. Таким образом, можно сказать, что мы решили данную систему. Для того, чтобы проверить правильность решения достаточно подставить в исходную систему выражений данные ответы вместо соответствующих корней. Если равенство будет соблюдено, то это означает, что представленная система уравнений решена верно.
  11. Способ 2: подбор параметров

    Второй известный способ решения системы уравнений в Экселе – это применение метода подбора параметров. Суть данного метода заключается в поиске от обратного. То есть, основываясь на известном результате, мы производим поиск неизвестного аргумента. Давайте для примера используем квадратное уравнение


    Этот результат также можно проверить, подставив данное значение в решаемое выражение вместо значения x .

    Способ 3: метод Крамера

    Теперь попробуем решить систему уравнений методом Крамера. Для примера возьмем все ту же систему, которую использовали в Способе 1 :

    14x1 +2x2 +8x4 =218
    7x1 -3x2 +5x3 +12x4 =213
    5x1 +x2 -2x3 +4x4 =83
    6x1 +2x2 +x3 -3x4 =21

    1. Как и в первом способе, составляем матрицу A из коэффициентов уравнений и таблицу B из значений, которые стоят после знака «равно» .
    2. Далее делаем ещё четыре таблицы. Каждая из них является копией матрицы A , только у этих копий поочередно один столбец заменен на таблицу B . У первой таблицы – это первый столбец, у второй таблицы – второй и т.д.
    3. Теперь нам нужно высчитать определители для всех этих таблиц. Система уравнений будет иметь решения только в том случае, если все определители будут иметь значение, отличное от нуля. Для расчета этого значения в Экселе опять имеется отдельная функция – МОПРЕД . Синтаксис данного оператора следующий:

      МОПРЕД(массив)

      Таким образом, как и у функции МОБР , единственным аргументом выступает ссылка на обрабатываемую таблицу.

      Итак, выделяем ячейку, в которой будет выводиться определитель первой матрицы. Затем жмем на знакомую по предыдущим способам кнопку «Вставить функцию» .

    4. Активируется окно Мастера функций . Переходим в категорию «Математические» и среди списка операторов выделяем там наименование «МОПРЕД» . После этого жмем на кнопку «OK» .
    5. Запускается окно аргументов функции МОПРЕД . Как видим, оно имеет только одно поле – «Массив» . В это поле вписываем адрес первой преобразованной матрицы. Для этого устанавливаем курсор в поле, а затем выделяем матричный диапазон. После этого жмем на кнопку «OK» . Данная функция выводит результат в одну ячейку, а не массивом, поэтому для получения расчета не нужно прибегать к нажатию комбинации клавиш Ctrl+Shift+Enter .
    6. Функция производит подсчет результата и выводит его в заранее выделенную ячейку. Как видим, в нашем случае определитель равен -740 , то есть, не является равным нулю, что нам подходит.
    7. Аналогичным образом производим подсчет определителей для остальных трех таблиц.
    8. На завершающем этапе производим подсчет определителя первичной матрицы. Процедура происходит все по тому же алгоритму. Как видим, определитель первичной таблицы тоже отличный от нуля, а значит, матрица считается невырожденной, то есть, система уравнений имеет решения.
    9. Теперь пора найти корни уравнения. Корень уравнения будет равен отношению определителя соответствующей преобразованной матрицы на определитель первичной таблицы. Таким образом, разделив поочередно все четыре определителя преобразованных матриц на число -148 , которое является определителем первоначальной таблицы, мы получим четыре корня. Как видим, они равны значениям 5 , 14 , 8 и 15 . Таким образом, они в точности совпадают с корнями, которые мы нашли, используя обратную матрицу в способе 1 , что подтверждает правильность решения системы уравнений.

    Способ 4: метод Гаусса

    Решить систему уравнений можно также, применив метод Гаусса. Для примера возьмем более простую систему уравнений из трех неизвестных:

    14x1 +2x2 +8x3 =110
    7x1 -3x2 +5x3 =32
    5x1 +x2 -2x3 =17

    1. Опять последовательно записываем коэффициенты в таблицу A , а свободные члены, расположенные после знака «равно» — в таблицу B . Но на этот раз сблизим обе таблицы, так как это понадобится нам для работы в дальнейшем. Важным условием является то, чтобы в первой ячейке матрицы A значение было отличным от нуля. В обратном случае следует переставить строки местами.
    2. Копируем первую строку двух соединенных матриц в строчку ниже (для наглядности можно пропустить одну строку). В первую ячейку, которая расположена в строке ещё ниже предыдущей, вводим следующую формулу:

      B8:E8-$B$7:$E$7*(B8/$B$7)

      Если вы расположили матрицы по-другому, то и адреса ячеек формулы у вас будут иметь другое значение, но вы сможете высчитать их, сопоставив с теми формулами и изображениями, которые приводятся здесь.

      После того, как формула введена, выделите весь ряд ячеек и нажмите комбинацию клавиш Ctrl+Shift+Enter . К ряду будет применена формула массива и он будет заполнен значениями. Таким образом мы произвели вычитание из второй строки первой, умноженной на отношение первых коэффициентов двух первых выражений системы.

    3. После этого копируем полученную строку и вставляем её в строчку ниже.
    4. Выделяем две первые строки после пропущенной строчки. Жмем на кнопку «Копировать» , которая расположена на ленте во вкладке «Главная» .
    5. Пропускаем строку после последней записи на листе. Выделяем первую ячейку в следующей строке. Кликаем правой кнопкой мыши. В открывшемся контекстном меню наводим курсор на пункт «Специальная вставка» . В запустившемся дополнительном списке выбираем позицию «Значения» .
    6. В следующую строку вводим формулу массива. В ней производится вычитание из третьей строки предыдущей группы данных второй строки, умноженной на отношение второго коэффициента третьей и второй строки. В нашем случае формула будет иметь следующий вид:

      B13:E13-$B$12:$E$12*(C13/$C$12)

      После ввода формулы выделяем весь ряд и применяем сочетание клавиш Ctrl+Shift+Enter .

    7. Теперь следует выполнить обратную прогонку по методу Гаусса. Пропускаем три строки от последней записи. В четвертой строке вводим формулу массива:

      Таким образом, мы делим последнюю рассчитанную нами строку на её же третий коэффициент. После того, как набрали формулу, выделяем всю строчку и жмем сочетание клавиш Ctrl+Shift+Enter .

    8. Поднимаемся на строку вверх и вводим в неё следующую формулу массива:

      =(B16:E16-B21:E21*D16)/C16

      Жмем привычное уже нам сочетание клавиш для применения формулы массива.

    9. Поднимаемся ещё на одну строку выше. В неё вводим формулу массива следующего вида:

      =(B15:E15-B20:E20*C15-B21:E21*D15)/B15

      Опять выделяем всю строку и применяем сочетание клавиш Ctrl+Shift+Enter .

    10. Теперь смотрим на числа, которые получились в последнем столбце последнего блока строк, рассчитанного нами ранее. Именно эти числа (4 , 7 и 5 ) будут являться корнями данной системы уравнений. Проверить это можно, подставив их вместо значений X1 , X2 и X3 в выражения.

    Как видим, в Экселе систему уравнений можно решить целым рядом способов, каждый из которых имеет собственные преимущества и недостатки. Но все эти методы можно условно разделить на две большие группы: матричные и с применением инструмента подбора параметров. В некоторых случаях не всегда матричные методы подходят для решения задачи. В частности тогда, когда определитель матрицы равен нулю. В остальных же случаях пользователь сам волен решать, какой вариант он считает более удобным для себя.

Micrisoft Office Excel 2007 – специальная программа Windows, позволяющая составлять различные таблицы с вводимыми данными. Более того, данная программа позволяет решать уравнения.

Открываем Excel 2007. Для наиболее простого решения уравнения воспользуйтесь функцией «поиск решений». Правда, во многих стандартных пакетах Office данная надстройка не установлена. Чтобы установить, откройте параметры Office Excel, которые находятся в правом нижнем углу всплывающего нижнего диалогового окна. В открывшемся меню кликаем в следующей последовательности: «надстройки» - «Поиск решения» - «перейти».

После перехода установите галочку рядом с пунктом «поиск решения» и нажмите OK.

Затем Excel выполнит настройку программы.

Затем, чтобы решить уравнение, введите его в поле листа. Пусть ваше уравнение с двумя переменными: F(x1,x2)=3×1+2×2 – max, в случае определенных ограничений:

  • X1 - x2 ≥ -2
  • 3×1 - 2×2 ≤ 6
  • 2×1+3×2 ≥ 2
  • X2 ≤ 3
  • X1 ≥ 0
  • X2 ≤ 0

Введите в колонку А таблицы Excel переменные х1 и x2. Затем выделите синим цветом поле, где расположены полученные значения переменных. Затем в колонке А введите саму функцию F(x1, x2)=. А справа от нее выделите красным цветом ту ячейку, в которой будет находиться значение данной функции.

Затем в красное поле введите само уравнение 3×1+2×2. Учтите, что х1 – ячейка В1, а х2 – ячейка В2.

Теперь введите в поле все ограничения.

Затем перейдите в раздел «поиск решений» (папка данные). Найдите поле «установить целевую ячейку», куда нужно поставить красную ячейку. Напротив «=» пишем максимальное значение.
В поле «изменяя ячейки» добавьте синие ячейки – х1, х2.

Если вы ввели все ограничения, проверьте их правильность, после чего нажмите кнопку «выполнить». В случае если все данные введены верно, то программа должна рассчитать неизвестные. В нашем случае х1=4, ч2=3 и F(x1,x2)=18. Уравнение решено.